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SUMMARY 
An efficient numerical method is presented for solving the equations of motion for viscous fluids. The 
equations are discretized on the basis of unstructured finite element meshes and then solved by direct 
iteration. Advective fluxes are temporarily fixed at each iteration to provide a linearized set of coupled 
equations which are then also solved by iteration using a fully implicit algebraic multigrid (AMG) scheme, 
A rapid convergence to machine accuracy is achieved that is almost mesh-independent. The scaling of 
computing time with mesh size is therefore close to the optimum. 
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1. INTRODUCTION 

Spatial resolution is of paramount importance in the numerical solution of fluid transport 
equations. This is because flow fields of practical interest are usually complex, exhibiting spatial 
variations over wide ranges of length scale. Even stable laminar flows can require resolution 
over several orders of length scale. 

Resolution is therefore even more important than formal accuracy of a discretization scheme 
in the sense that high accuracy is of little use if the computational mesh is too coarse to resolve 
the flow. Since the mesh size requirement (numbers of elements/nodes) scales as the cube of the 
range of length scales, the need for large computational meshes is inescapable, as is the need 
for solvers whose efficiency scales well with problem size. Iterative solution methods offer the 
best prospect in this regard since they offer good scaling of both computing time and data 
storage with mesh size. Multigrid methods for example can offer close-to-optimum linear 
scaling. 

The computing power required for resolving even moderately complex fluid flows (say 
two-order resolution in 3D space and in time) is beyond the practical capabilities of serial 
computing technology and of necessity will require parallel processing. A practical flow solver 
must therefore be suitable for implementation on parallel processing architectures. Parallel 
algorithms have already been implemented both for geometric multigrid’ and for the algebraic 
multigrid of particular interest here.’ 

Algebraic multigid (AMG) solvers are particularly attractive for the following reasons. 

1. ‘Coarse grid’ matrices are derived automatically by algebraic methods. 
2. The flow field itself is accounted for in the coarsening process: coarsening is not simply 

3. The errors at  all length scales are reduced efficiently in the iterative process. 
‘geometrical’. 
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This last point is particularly relevant for fine meshes and non-uniform meshes where there 
is a wide bandwidth of errors. The more complex the flow field, the wider is the range of length 
scales to be resolved and the wider is the bandwidth of errors to be corrected in the iterative 
process. 

The first attempt to produce an algebraic multigrid solver for fluid flow appears to have been 
that of L ~ n s d a l e . ~  Impressive convergence and close-to-optimum scaling were achieved. How- 
ever, the method did not prove to be robust. 

In the work to be reported here, a different discretization is used and a simpler form of 
algebraic multigrid for coupled variables is employed. A robust AMG solver for the Navier- 
Stokes equations is achieved. 

2. DISCRETIZATION 

Since the aim is to achieve resolution by mesh refinement, both local and global, discretizations 
of at least first-order accuracy are essential. Simple linear finite elements will satisfy this 
requirement, offering between first- and second-order accuracy for Navier-Stokes problems. The 
simplest possible element is the triangle in two dimensions or the tetrahedron in three dimensions. 
These also have the added attraction that automatic mesh generation packages have been 
developed for them. 

To ensure convergence to accurate solutions, it is important that the discretization produces 
good coupling between flow and pressure variables. Schemes based on collocated variables may 
not give this. Odd-even decoupling in the pressure field (checker-boarding) and possible wiggles 
in the velocity field can occur unless special measures are introduced to prevent them. One such 
is the addition of a fourth-order dissipation term to the continuity equation: equivalent to a 
special interpolation for velocity as devised by Rhie and Chow.’ The penalty is that continuity 
will not be exactly satisfied owing to the false dilation introduced. For some problems the error 
can be unacceptably large in regions of high pressure gradient. 

In this investigation we look for a compact discretization which is free from such errors but 
which nevertheless gives good coupling between the variables. This demands different interpola- 
tions for pressure p and velocity u. Baliga and Patankar6 have described two schemes. The first 
used a coarser discretization for p than for u, the u-elements being nested triangular subelements 
of the larger triangular p-element. The second due to Prakash7 and Hookey* used equal-order 
elements with a linear interpolation for p but with a special interpolation for u based on a local 
solution of the momentum equation within the element. The latter approach is particularly 
attractive because the interpolation has a physical basis. Schneider and Raw’ devised a somewhat 
similar scheme for rectangular elements and found it gave exceptionally accurate results on 
standard test problems. 

The scheme adopted for this work is essentially that of Prakash and Hookey, though somewhat 
simplified. The discrete nodal flow variables are collocated at the vertices of the triangular 
elements. A complete set of discrete equations is assembled for those variables by enforcing the 
appropriate conservation laws on control volumes constructed for each node (Figure 1). The 
bounding control surfaces are conveniently formed by the lines joining the element centre to 
the centres of the element faces (for 3D by also joining the centres of faces to the centres of 
edges). Values for control surface fluxes can then be calculated from the interpolated flow 
velocites using the special interpolation. For simplicity a single-element velocity is used, the 
centre of the element providing the single interpolation point. A convenient solution for this 
velocity v, is a discrete solution in the finite volume approximation. The element itself may be 
used as the control volume or a subcontrol volume may be constructed. Figure 2 shows one 
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Control volume tesselation 

763 

Linear element 

Figure 1. Illustrating the linear triangular element, element assembly and construction of the ‘control volume tesselation’; 
one control volume is highlighted; 0, location of element interpolation point for element velocity v,; 0, location of 

nodal velocities v and pressure p 

control volume used for this work, obtained by joining the midpoints of lines joining the 
interpolation point to the vertices of the element. Other control volumes can be used. 

If u represents the fluid continuum velocity, p the density and p the viscosity, then integrating 
the momentum flux f over the surfaces of the control volume and equating it to the integrated 
volumetric source, 

f *dA = [(PU - ~ V ) U  + p ]  .dA = s dV, s s  s 
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I 
Figure 2. Interpolation for element velocities v,; a subcontrol volume is used for a local discrete solution of the equation 

of motion 

delivers a global set of discrete equations relating the element velocity array v, to the nodal 
velocity and pressure arrays v and p respectively, i.e. 

(2) 

where A ,  and F are part of the discrete advection-diffusion operator for elements, Ge is the 
element gradient operator and s? is the source array for elements. Enforcing the integral equation 
(1) for nodal control volumes delivers a second set 

(3) 

where A and G in this case are the nodal advectiondiffusion and gradient operators respectively 
and s"' is the momentum source/sink array for nodal control volumes. 

Ae(ve)ve + F(ve)v + G ~ P  = sF3 

A(v,)v + Gp = s"', 

Enforcing continuity for nodal control volumes provides the required third set 

Dv, = 0, (4) 

where D is the discrete divergence operator. 

3. METHOD OF SOLUTION 

3.1. Navier-Stokes solution algorithm 

The complete set of equations is solved by direct iteration, the advective fluxes being 
temporarily fixed at each iteration to give a linearized system. The matrix A ,  has a simple 
diagonal form and is easily inverted, so the solution of equation (2) is trivial, i.e. 

V, = A; '(SF - FV - G,p). (5 )  

Substituting directly into the continuity equation (4) delivers a second equation for the nodal 
variables v and p which together with the linearized equation (3) forms the coupled subset 

The temptation to pursue this rationalization further by direct substitution for v, in A is 
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resisted. Since we have to deal with the non-linearity by iteration in any event, the interpolation 
itself is used once at each iteration to update the Bux. The solution algorithm is thus as follows. 

1. ASSEMBLE equation (6) 
(using initial guess or latest estimate of v,). 

2. SOLVE equation (6) for v and p 
(using linear solver). 

3. ASSEMBLE equation (2) 
(using latest v and p). 

4. SOLVE equation (2) for v, 
(i.e. equation 5). 

5.  IF  converged 
STOP 

RETURN to 1. 
ELSE 

The explicit interpolation for v,, step 4, also permits an optional additional step which consists 
of adjusting the interpolated values of v, so that they satisfy continuity to a much tighter 
convergence criterion. We therefore look for velocity corrections v: such that 

v - (v, + v:) = 0 (7) 

and 

v A (V, + Vb) = v A V,. (8) 

The additional constraint ensures that the vorticity will not be disturbed in the adjustment. 
Equation (8) will be satisfied if 

v:,= - V Y ,  (9) 

where Y is a scalar potential function. Equations (9) and (7) can then be solved for vh, substitution 
of (9) giving a Poisson equation for Y. In practice it is convenient to replace (9) by the discrete 
equation 

v:= - A - ' G  e eP', (10) 

since the discrete equation for the scalar potential p' has a matrix operator that is then identical 
to the lower block diagonal in equation (6) and can be assembled from an existing subroutine. 

3.2. Linear solver 

For the solution of equation (6) a fully implicit solver based on algebraic multigrid methods 
has been developed. The pioneering work of Ruge and Stuben" and later developments of their 
approach by MacGregor" and Lonsdale3 have provided the basis. As previously noted, 
Lonsdale produced an AMG solver for Navier-Stokes problems that did not prove to be robust. 
Complications and approximations arising from a Rhie-Chow-type interpolation are thought 
to have been responsible. Equation (6) does not contain such complications. Moreover, the new 
solver does not explicitly use the SIMPLE algorithm as a smoother. Its use is therefore not 
restricted to Navier-Stokes problems and it promises to be a more general AMG solver for 
coupled variable sets. 
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The starting point is the basic scheme for single variables. Though any one of the above 
schemes could have been chosen. Lonsdale's scheme was adopted because of the appealing 
simplicity of its coarsening algorithm and the shorter set-up time penalty. It will be helpful to 
review this basic scheme. 

3.2.1. Review of single-variable AMG. Consider the solution of the equation set 

AX = b (11) 

for the single-variable set x. If x" is the latest iterate, we look for a convergent solution process 
such that the next iterate x"" is closer to x. In general x" will have a spectrum of errors across 
a band of wavelengths. For the classical field problems of interest here the bandwidth will depend 
on the ratio of the largest characteristic dimension in the problem to the closest nodal spacing. 
Iterative solvers based on point Gauss-Seidel relaxation have an efficiency for reducing errors 
that depends on the wavelength A. Efficiency is largest at the shortest wavelength but falls off 
as 

Multigrid methods have been developed to improve the efficiency bandwidth of the solver. 
This is achieved by generating a hierarchy of reduced equation sets (coarser grids) such that the 
shortest wavelengths on each grid progressively span the bandwidth. Application of a point 
Gauss-Seidel solver to each reduced equation set will thus efficiently remove errors in a 
succession of wavebands that together span the entire bandwidth. 

To generate a coarse grid reduced equation set, a coarsening operator K is applied to give 

Thus for wide bandwidth problems (fine meshes) their overall performance is poor. 

A'x' = b', 

where 

A' = KAK? 

If b' is derived on the basis of the residual in equation (1 l), i.e. 

b' = K(b - AX"), 

then solution of (12) provides a correction x' that can be used to improve the solution 

Clearly this procedure can be recursively applied to equation (12) and successively coarser grids 
(smaller equation sets). Choice of K, choice of the solver on each grid and choice of the strategy 
for passing residuals and corrections through the grids distinguish the different multigrid 
methods. For geometric multigrid K is determined entirely from geometric considerations of 
the computational mesh structure. For algebraic multigrid on the other hand it is determined 
entirely from considerations of the matrix A. It therefore depends on the physics of the problem 
and may not have any geometric significance at all; in fact x need not be a field variable, in 
which case the coarse meshes may be purely abstract concepts. 

Unstructured non-uniform computational meshes pose no particular difficulty for AMG; no 
special measures are necessary; the algorithm deals with them naturally. Similarly no special 
consideration needs to be given to boundary conditions; as long as they are implicitly contained 
in the equation set, the required information will be automatically transferred to the reduced 
equation sets/coarser grids by the K-operator. 
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Coarsening algorithm 

Essentially the strategy consists of seeking out the nodes with the strongest coupling (largest 
off-diagonals in A) and joining them together by adding their respective equations. A new coarse 
grid node is created that is representative of a number of fine grid nodes. The number is arbitrary, 
but overall a complete coarse grid has about half the number of nodes of the next fine grid. 
Note that there is therefore no need for the matrix operators K to be formed explicitly. However, 
if required, they could easily be assembled. Starting from a unit matrix on the finest mesh, they 
are generated by recursively applying the same A-coarsening operations. 

Some care is required in the implementation to avoid long strings of fine grid nodes being 
collected into a single coarse grid node. Lonsdale avoids this by coarsening in two passes through 
the nodes, starting from the most strongly connected. On the first pass fine grid nodes are only 
permitted to join if they have not already been incorporated into a coarse grid node; on the 
second pass a remaining fine grid node can be attached to the coarse grid node which already 
contains the neighbour to which the fine grid node is most strongly connected. This second pass 
is stopped once the sum of the coarse node total and the remaining fine node total reaches the 
desired size for the coarse grid; unallocated fine grid nodes are then assigned to be coarse grid 
nodes in their own right. Attention is then turned to the next coarse grid. 

The generation of coarse grids stops when no further coarsening can take place. This would 
be either a single coarse grid node or a number of isolated coarse grid nodes. These final 
equations would deal with the lowest wave number errors. 

Multigrid cycling strategy 

The strategy for passing residuals down and corrections up through the grids is the so-called 
F-cycle strategy summarized in Figure 3. Parallel algorithms for multiple-instruction, multiple- 
data (MIMD) computing architecture are described in Robinson's paper.' Residuals are 
transferred directly through the grids according to the coarsening rules. Corrections, however, 
are scaled/damped by a factor f i  before transfer. For the single-variable solver the correction 
vector xc is scaled such that any remaining error is orthogonal to xc, i.e. 

(x', [A(fixC) - bc]) = 0. (16) 

Fine grid 0 

1 

2 

3 

4 

Gauss-Seidel smoothing 

+ Transfer residual 

+ Transfer solution 

Figure 3. F-cycle strategy for transferring residuals and corrections 
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As found by Stuben," this improves the convergence. 

Smoother 

A simple point Gauss-Seidel relaxation is used for smoothing. Just one or two sweeps have 
been found to be satisfactory. A single sweep on the coarsest grid equation is of course sufficient 
to give the exact solution. 

Relaxation factor 

In principle this basic scheme requires no underrelaxation to ensure convergence. In practice 
a very small amount may be allowed to cover against round-off errors spoiling the desired row 
sum condition Xj A, 2 0 for Aii > 0. This is achieved by increasing the diagonal and adding a 
compensation to the right-hand side bi of equation (1 1). 

Performance 

To illustrate the performance of this basic scheme, results are presented in Figures 4 and 5 
for a heat conduction problem in a square box. The computational mesh used is a simple 
triangulation of a uniform distribution of nodes arranged on a rectangular lattice. Boundary 
surfaces are all adiabatic, but two corner points (diagonally opposite) are given fixed tempera- 
tures. Figure 4 shows that the scaling of computing time with the number of nodes in the 
discretization is within 4% of the optimum linear scaling. The time includes the grid set-up time. 

SCALING OF COMPUTING TIME WITH MESH SIZE 

1 o5 

L'(3'0) ,F(2.0) 

/ ,' 

/ ,/ ,CG(1.66) 
/ ,' 

/ ,  

, 

I,, ,' 

/ ' 

I I U 

I 0' 1 0' 1 o3 I 0' 
Number of nodes 

Figure 4. Scaling of linear solvers for conduction in a square box. LU is a direct solver involving LU decomposition 
with back substitution; F is a direct solver based on the frontal method; CG is a diagonally preconditioned conjugate 
gradient solver; AMG is the algebraic multigrid solver. Numbers in brackets represents the scaling factor slopes of the 

curves 
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SCALING OF COMPUTING TIME WITH MESH SIZE 
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Figure 5. Scaling of the AMG solver for computational meshes of different aspect ratio. The test problem is the same 
as that for Figure 4 

For comparison the scalings of other popular solvers are also shown: LU decomposition with 
back substitution, the frontal method and a conjugate gradient method with diagonal pre- 
conditioning. For discretizations exceeding about 400 nodes the AMG performance is superior. 

Figure 5 gives an indication of the mesh independence of the convergence of the solver. The 
scalings for aspect ratios of nodal spacings in the range 1-100 all lie on the same characteristic. 

The conjugate gradient performance, not shown in Figure 5,  deteriorated markedly with 
increasing aspect ratio. Note also that the conjugate gradient solver would not be suitable for 
the asymmetric matrices associated with the Navier-Stokes equations. 

3.2.2. Coupled variable AMG. The scheme for coupled variables is essentially the same as the 
basic scheme but with some additional constraints on the coarsening algorithm in view of the 
more complex system matrix. A small change is made to the solution strategy and a provision 
for relaxation of the coupling between variables is introduced. 

Coarsening 

In general a system matrix for a coupled variable equation set will consist of diagonal and 
off-diagonal blocks, the off-diagonal blocks representing the coupling between variables. For 
mixed vector and scalar variables for example these off-diagonal blocks represent discrete 
gradient and divergence operators as in equation set (6). The strategy for coarsening such coupled 
equation sets is to preserve this form of the system matrix down through all the grids. This is 
equivalent to choosing K to have a block diagonal form, i.e. forbidding the combination of 
equations for different variables. Note that this does not prevent different coarsening for different 
variables. 
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Multigrid cycling strategy 

The same F-cycle solution-cycling strategy is used and the same point Gauss-Seidel relaxation 
is employed on all the grids except the coarsest. Because the coarsening rule forbids the joining 
of equations for different variables, the coarsest equation set will now be a coupled equation 
set, so a direct solver is used to obtain an accurate solution. 

Direct solvers such as LU decomposition with back substitution are very efficient for small 
matrices (Figure 4), so no severe penalty is incurred. In fact we can afford to stop the coarsening 
at a higher level (between about 30 and 60 equations). Note that introducing a direct solver at 
this level will not degrade the overall scaling. For fine grids the Gauss-Seidel relaxation is applied 
to the u-, u- and p-equation sets (in that order). For each sweep through the u- and v-equation 
sets there are two sweeps through the p-equations (first to last and last to first). 

Underrelaxation 

It has been found necessary to make provision for a small amount of underrelaxation of the 
coupling between variables. For example, if o is the relaxation factor for p and p" is the latest 
iterate, then p" is replaced according to 

pn*wpn + (1  - o)p"-I, 0 I 1 . 0 ,  (17) 

in the equation sets for v, where pn-' is the previous Navier-Stokes iterate. Similar under- 
relaxation can be made for v. 

In practice very little if any underrelaxation is necessary. Typically values of w in the range 

1.0 2 w 2 0.8 

are sufficient to ensure rapid convergence. The overall convergence of the Navier-Stokes solver 
is not sensitive to the precise value of w in this range. 

4. PERFORMANCE 

4.1. Navier-Stokes convergence characteristics 

In this subsection convergence factors are used to quantify convergence rates. The convergence 
factor is defined as the reduction in the absolute maximum residual per iteration. Thus the 
smaller the convergence factor, the more rapid is the convergence. 

4.1.1. Convergence. Figure 6 shows the implicit AMG solver convergence characteristics for 
a driven cavity test problem on a uniform mesh at  Re = 100. It will be evident that convergence 
rates are largely mesh-independent. If anything, there is slight improvement with mesh refine- 
ment. Just 10 iterations are sufficient to take the residual to machine accuracy. 

For comparison a convergence characteristic for the SIMPLE algorithm is also shown. This 
can be described as a segregated solution AMG solver, i.e. algebraic multigrid is used as the 
linear solver for both velocity and pressure within the SIMPLE algorithm. It will thus give the 
best performance that could be expected with a segregated solution algorithm for unstructured 
mesh applications. Nevertheless, on this structured mesh problem its initial convergence factor 
0.88, is poor compared with that of the implicit AMG solver, 0.24. Thus after as many as 30 
SIMPLE iterations the level of convergence is only just comparable with that of the implicit 
AMG solver after just three iterations. 
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CONVERGENCE CHARACTERISTICS 
(Driven cavity: Re=100) 

1 oo 
' I - .  Structured meshes 

, SOLUTION METHOD 8 MESH 1 SIMPLE 1681 nodes 1 
AMG 144 nodes i 

1 AMG 1681 nodes 
~ 

Iteration Number 

Figure 6. Convergence characteristics for the AMG solver for the dirven cavity problem at Re = 100; uniform meshes 
of 1681 nodes and 144 nodes. For comparison is shown the convergence characteristic for the SIMPLE algorithm on 

the 1681-node mesh 

The initial SIMPLE convergence rate, moreover, is not maintained, as is illustrated in Figure 
7 where after about 100 iterations the convergence factor has deteriorated to 0.97. Many 
hundreds of SIMPLE iterations would be required to achieve machine accuracy. 

Figures 8 and 9 show the convergence characteristics for an unstructured mesh of 1509 nodes. 
For comparison the convergence rate for a uniform mesh of 1681 nodes is also shown. A 
two-dimensional, 2:l  local mesh refinement is used in the unstructured mesh to even out the 
spatial variations in mesh Peclet number for this problem (i.e. higher nodal concentrations in 
regions of high velocity). The implicit AMG solver convergence characteristics are almost 
identical. For the SIMPLE algorithm, however, the initial convergence factor of 0 8 8  is 
maintained for fewer iterations and as a result the overall convergence factor is reduced. 

4.1.2. Scaling. The scaling of the convergence rate with problem size has been investigated 
at  Reynolds numbers of 10, 100 and 400 for maximum mesh Peclet numbers in the range 
0.25-33.3. Table I gives the convergence factors for the driven cavity problem for different meshes. 

For this problem the mesh Peclet number should satisfy 

Pe .g Re'/' 

in order for the boundary layers to be resolved. The condition is satisfied for the Re = 10 case 
and it will be apparent that the convergence factor is largely independent of the number of 
unknowns. Except for the coarsest mesh in the Re = 100 case the condition is also reasonably 
well satisfied and again the convergence factor is otherwise mesh-independent. At Re = 400, 
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CONVERGENCE CHARACTERISTICS 
(Driven cavity: Re-1 00) 

[ Structured meshes ] 

- _  -._ -.. - _  - - _  - _  - - _  
-. 

:I 
1 o.2 =' 

- - - - -SIMPLE: 1681 Nodes 
- - AMG: 144 Nodes 

l , , , , l , , , ~ , l , , , , l , , , ~  
0 20 40 60 80 100 120 

Iteration Number 

Figure 7. Comparison of the convergence characteristics for the AMG solver and the SIMPLE algorithm; driven cavity 
at Re = 100; uniform meshes of 1681 and 144 nodes 

CONVERGENCE CHARACTERISTICS 
(Driven cavity, Re=100) 

- - - _ _  - - _ _ _ _  

- SIMPLE 1509 Unstructured nodes 
AMG 1509 Unstructured nodes - - - 

0 10 20 30 40 

Iteration Number 

3 

Figure 8. Convergence characteristics of the AMG solver for an unstructured mesh of 1509 nodes with a 2: l  mesh 
grading. The convergence characteristic for a structured mesh is shown for comparison 
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CONVERGENCE CHARACTERISTICS 
(Driven cavity: Re=lOO) 

.- 

- - --_SIMPLE: 1509 Unstructured nodes 
- - - AMG: 1509 Unstructured nodes 

10.6 h,,,,, , , , , , , , , 1- , , I , ,  , ,-, ,I,, , , 
0 20 40 60 a0 ioo 120 

Iteration Number 

Figure 9. Comparison of the convergence characteristics of the AMG solver and the SIMPLE algorithm; unstructured 
mesh of 1509 nodes with a 2: l  mesh grading. The convergence characteristic of the structured mesh is shown for 

comparison. 

Table I. Convergence factors for implicit AMG; driven cavity test prob- 
lem (N, number of unknowns; Pe, mesh Peclet number; a, convergence 

factor) 

Re = 10 
N 243 432 1323 2187 3267 5043 
Pe 1.25 0.9 1 0.5 0.38 0.3 1 0.25 
a 0.064 0.058 0.060 0.062 0.055 0.056 

R e =  100 
N 432 1323 21 87 3267 5043 
Pe 9.1 5.0 3.8 3.1 2.5 
a 0.3 1 0.24 0.24 0.24 0.24 

Re=400 
N 324 1818 2586 4527 
Pe 33.3 13.3 1 1 . 1  8.3 
U 0.64 0.56 0.54 0.45 
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however, the meshes employed are relatively coarse and the above criterion is barely satisfied; 
it is actually violated with the coarsest mesh. The convergence factors are then less impressive 
but nevertheless quite respectable when compared with those for decoupled solution methods 
even for the coarsest mesh. There is also a marked improvement in the convergence rate with 
mesh refinement. It is concluded that true multigrid performance and scaling can be achieved 
with this implicit AMG solver provided that the computational mesh is sufficient to resolve the 
flow field. 

The convergence factors of Table I were obtained for an interpolation scheme which used the 
complete element as the subcontrol volume. When a more accurate interpolation scheme was 
used, based on the subcontrol volume illustrated in Figure 2, the convergence factors were not 
quite as good at low Reynolds numbers. Table I1 gives typical values, again for Reynolds numbers 
in the range 10-400 (mesh Peclet numbers in the rantge 0.24-40). These convergence factors are 
still far superior to those for segregated solution methods, as is their scaling. 

4.2. Navier-Stokes test problems 

This form of the discrete transport equations is based on the simplified implementation of 
the Prakash-Hookey scheme. To assess the scheme, it has been applied to a number of standard 
test problems. The results from just three problems have been selected to illustrate the 
performance. All the results presented have been obtained with an upwind differencing scheme 
for advection that is between first- and second-order-accurate. Higher-order schemes have been 
left for future investigation. The test problems are 

(i) a driven cavity 
(ii) flow over a backward-facing step 

(iii) pipe flow with an internal section of volumetric drag. 

The third is a simple test for false compressibility. 

Table 11. Convergence factors for implicit AMG 
solver; interpolation based on subcontrol volume 
of Figure 2 ( N ,  number of unknowns; Pe, mesh 

Peclet number; a, convergence factor) 

Re = 10 

N 363 1323 2883 5043 
Pe 1 .o 0.5 0.33 0.243 
U 0.14 0.14 0.12 0.13 

Re = 100 
N 363 1323 2883 5043 
Pe 10.1 5.0 3.3 2.43 
a 0.30 0.28 0.29 0.28 

Re = 400 
N 363 1323 2883 5043 
Pe 40.0 20.0 13.3 9 7 5  
U 0.5 1 0.47 0.46 0.44 
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DRIVEN CAVITY VELOCITY PROFILES 
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Figure 10. Velocity profiles along vertical and horizontal lines through the centre of a driven cavity at Re = 100 and 
400. Comparison with the benchmark data of Ghia et ~ 1 . ' ~  

4.2.1. Driven cavity. Velocity profiles u(x = 0.5, y )  and v (x ,  y = 0.5) for fluid in a unit-square 
cavity driven at Reynolds numbers of 100 and 400 (u(x,  y = 1) = 1.0) are shown in Figure 10. 
Uniform meshes of 21 x 21 and 41 x 41 were used respectively. Superimposed are the bench- 
mark data points of Ghia et al. l 3  obtained on a non-uniform mesh of 129 x 129. The maximum 
velocities along the x = 0.5 axis are within 2% and 3.5% of the benchmarks respectively. These 
are remarkably accurate predictions bearing in mind the coarseness of the meshes. As noted by 
S~hneider , '~  Galpin' found much larger errors using conventional finite difference methods on 
similar grids. 

4.2.2. Flow over a backward-facing step. A fluid enters a two-dimensional channel of width 
0.2 m with a parabolic velocity profile, maximum velocity 1.0 m s-'. Some distance down the 
channel there is a one-sided step increase in width to 0.3 m. A recirculation is set up behind the 
step. The longitudinal extent of the recirculation is marked by the 'point of reattachment' or 
the point at which unidirectional flow is re-established across the entire width of the channel. 
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Figure 11. Length of the recirculation eddy for flow over a backward-facing step at Reynolds numbers in the range 
20-100 (based on step height). Comparison with the data of Hutton and Smith 

Prediction of the point of reattachment and its dependence on Reynolds number is the gauge 
used to assess the performance of Navier-Stokes solvers for this problem. 

In Figure 11 the results obtained for an unstructured mesh of 1331 nodes are compared with 
the calculations of Hutton and Smith.I6 In both cases the inlet boundary condition was the 
prescribed parabolic profile, while constant pressure, continuitive outflow was prescribed for the 
outlet boundary of the calculational domain. The recirculation length is measured in units of 
step height. Step height is also used as the characteristic length in the definition of Reynolds 
number, together with the mean channel flow velocity as the characteristic velocity scale. 

For computational meshes of this size first-order methods are known to underpredict the 
reattachment length by as much as 10% or more. The results obtained here are within 3% of 
accurate solutions produced by Hutton and Smith using a higher-order method. 

4.2.3. Pipe flow with internal volumetric resistance. A channel of width 0.4 m and length 
greater than 1 m contains a resistive section between 0.4 and 0.6 m from the channel entrance. 
A fluid with unit viscosity and unit density flows through the channel, entering with a parabolic 
profile and unit peak velocity. The resistance is such as to double the pressure drop down a 1 m 
length of the pipe, i.e. from 50 to 100 kgf m-'  s - ~ .  

Three simulations of this idealized problem have been carried out with three different 
discretizations of the Navier-Stokes equations, but all based on linear triangular elements. The 
first, A, is a Galerkin discretization with a segregated method of solution similar to that described 
by Shaw.I7 The second, B, is similar to A but incorporates the Rhie-Chow approximation; it 
may be described as the finite element equivalent of the Rhie-Chow method; it considerably 
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Figure 12. Axial velocity and pressure profiles for flow through a pipe containing a section of volumetric resistance 
between 0.4 and 0.6 m from the inlet. Predictions for the Galerkin-based discretizations A and B with a segregated 

solution method 
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Figure 13. Axial velocity and pressure profiles for flow through a pipe containing a section of volumetric resistance 
between 0.4 and 0.6 m from the inlet. Predictions for the simplified Prakash-Hookey scheme C with AMG coupled 

solution 
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improves the convergence characteristics of method A. Finally, the third method, C, is the 
simplified Prakash-Hookey scheme of this work. 

The axial velocity profiles along the length of the pipe for methods A and B are shown in 
Figure 12 for a coarse mesh of 9 x 21 nodes. Method A exhibits ‘wiggles’ in both pressure and 
velocity. It displays the correct pressure drop, but the nodal velocities do not satisfy continuity. 
Method B on the other hand does not exhibit ‘wiggles’, but the simulated fluid is unable to 
support the correct pressure drop. This is due to the false compressibility associated with the 
Rhie-Chow term in the pressure equation. It also results in a large drop in the axial velocity in 
the resistive zone which exceeds that which could be expected from a redistribution of flow. 

In Figure 13 the results for the new scheme, method C, are shown. The results closely follow 
the correct solution within the discretization error for this coarse mesh. The nodal velocities are 
very close to the continuitive velocities, the dip in the resistive zone being entirely associated 
with flow redistribution. 

These results demonstrate that this simple implementation of the Prakash-Hookey scheme 
does not suffer from false compressibility or ‘wiggles’ and is therefore superior to those schemes 
based on the Rhie-Chow method of interpolation. 

5. GENERAL COMMENTS 

The performance characteristics demonstrated in these test problems meet the requirements 
outlined in Section 1 for addressing the problem of spatial resolution in fluid dynamics. The 
solution scheme offers 

(i) good convergence characteristics 
(ii) good scaling of convergence characteristics 

(iii) good coupling between flow variables for unstructured finite element meshes. 

With close-to-optimum linear scaling the method is also well placed for exploiting the large 
increases in computing power that will become available through large-scale MIMD parallel 
processing architectures. Since, moreover, massively parallel MIMD machines are now being 
produced, the solver could represent a timely development, offering an efficient method of 
harnessing such computing power to the fluid flow problem. 

Other field problems such as those in stress analysis, electromagnetism and magnetohydro- 
dynamics may also benefit from this approach. 

6. CONCLUSIONS 

An algebraic multigrid algorithm has been produced for solving the transport equations for fluid 
flow. The discretization gives good coupling between flow variables for unstructured finite 
element meshes. The solution algorithm is efficient, giving a rapid convergence to machine 
accuracy that is almost mesh-independent. The scaling of computing time with mesh size is close 
to the optimum. 
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